Journal of Organometallic Chemistry, 186 (1980) 361-370 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ZUR KENNTNIS DER CHEMIE DER METALLCARBONYLE UND DER CYANO-KOMPLEXE IN FLÜSSIGEM AMMONIAK

XXXIX *. ÜBER DIE REAKTIONEN VON EIN- UND ZWEIKERNIGEN, KATIONISCHEN η^{5} -CYCLOPENTADIENYL-CARBONYL-KOMPLEXEN DES EISENS, RUTHENIUMS UND OSMIUMS MIT FLÜSSIGEM AMMONIAK OBERHALB 10°C

ANTON JUNGBAUER und HELMUT BEHRENS *

Institut für Anorganische Chemie II der Universität Erlangen-Nürnberg (Deutschland) (Eingegangen den 1. August 1979)

Summary

The reactions of the cationic complexes $[\eta^5 - C_5 H_5 M(CO)_3]^+$ (M = Fe, Ru, Os), $[\eta^5 - C_5 H_5 Ru(CO)_2(L)]^+$ (L = MeNC, PPh₃, PEt₃), $\{[\eta^5 - C_5 H_5 Ru(CO)_2]_2(Ph_2PCH_2 - CH_2PPh_2)\}^{2+}$ and of the covalent carbamoyl carbonyl compounds $\eta^5 - C_5 H_5 M_5 (CO)_2(CONH_2)$ (M = Fe, Ru, Os), $\eta^5 - C_5 H_5 Ru(CO)(L)(CONH_2)$ (L = MeNC, PPh₃, PEt₃), $[\eta^5 - C_5 H_5 Ru(CO)(CONH_2)]_2(Ph_2PCH_2CH_2PPh_2)$ with liquid NH₃ above 10°C yield the hydrido carbonyls $\eta^5 - C_5 H_5 M(CO)_2(H)$, $\eta^5 - C_5 H_5 Ru(CO)(H)]_2(Ph_2PCH_2CH_2PPh_2)$ with the simultaneous formation of NH₄NCO or CO(NH₂)₂.

Zusammenfassung

Die Reaktionen der Kationkomplexe $[\eta^{5}-C_{5}H_{5}M(CO)_{3}]^{+}$ (M = Fe, Ru, Os), $[\eta^{5}-C_{5}H_{5}Ru(CO)_{2}(L)]^{+}$ (L = MeNC, PPh₃, PEt₃), $\{[\eta^{5}-C_{5}H_{5}Ru(CO)_{2}]_{2}$ (Ph₂-PCH₂CH₂PPh₂) $\}^{2+}$ und der kovalenten Carbamoyl-carbonyl-Verbindungen $\eta^{5}-C_{5}H_{5}M(CO)_{2}(CONH_{2})$ (M = Fe, Ru, Os), $\eta^{5}-C_{5}H_{5}Ru(CO)(L)(CONH_{2})$ (L = MeNC, PPh₃, PEt₃), $[\eta^{5}-C_{5}H_{5}Ru(CO)(CONH_{2})]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2})$ mit flüssigem NH₃ oberhalb 10°C führen zu den Hydridocarbonylen $\eta^{5}-C_{5}H_{5}M(CO)_{2}(H)$, $\eta^{5}-C_{5}H_{5}Ru(CO)(L)(H)$ und $[\eta^{5}-C_{5}H_{5}Ru(CO)(H)]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2})$ unter gleichzeitiger Bildung von NH₄NCO oder CO(NH₂)₂.

^{*} Für XXXVIII. Mitteilung siehe Ref. 1.

Einleitung

In den letzten Jahren haben wir zahlreiche kationische Carbonylkomplexe mit flüssigem NH₃ umgesetzt *, wobei in den meisten Fällen Carbamoyl-carbonyl-Verbindungen entstehen, für die der Carbonsäureamidligand (CONH₂) charakteristisch ist [1-11]. In vielen Fällen konnten bei höheren Temperaturen, speziell beim Mo [7], Mn [8,12], Re [8,12,13] und Co [5,6,10], in Analogie zum Hofmannschen Säureamidabbau, in flüssigem NH₃ unter gleichzeitiger Bildung von NH₄NCO bzw. CO(NH₂)₂ die entsprechenden Hydrido-carbonyl-Komplexe zugänglich gemacht werden.

Durch die folgenden Untersuchungen soll nun gezeigt werden, dass bei den Umsetzungen verschiedener ein- und zweikerniger kationischer η^{s} -Cyclopentadienyl-carbonyl-Komplexe des Fe, Ru und Os in flüssigem NH₃ oberhalb 10°C ebenfalls Hydrido-carbonyl-Verbindungen entstehen.

Umsetzung von kationischen η^5 -Cyclopentadienyl-carbonyl-Komplexen bzw. η^5 -Cyclopentadienyl-carbamoyl-carbonylen mit flüssigem Ammoniak oberhalb 10°C

Nachdem frühere Untersuchungen gezeigt haben, dass sich $[\eta^{5}-C_{5}H_{5}Fe(CO)_{3}]$ -PF₆ bei --10°C mit flüssigem NH₃ zum neutralen Carbamoylkomplex $\eta^{5}-C_{5}H_{5}Fe(CO)_{2}(CONH_{2})$ [4] umsetzt, haben wir die gleiche Reaktion auch bei 10°C und einer Reaktionszeit von etwa 10 min durchgeführt, wobei neben NH₄NCO der Hydridokomplex $\eta^{5}-C_{5}H_{5}Fe(CO)_{2}(H)$ gebildet wird:

$$[\eta^5-C_5H_5Fe(CO)_3]PF_6 + 3 \text{ NH}_3 \xrightarrow{10^\circ \text{C}}_{\text{flüss. NH}_3}$$

$$\eta^{5}$$
-C₅H₅Fe(CO)₂(H) + NH₄NCO + NH₄PF₆ (1)

Dieser entsteht ebenfalls, wenn man das bei --50°C erhaltene η^5 -C₅H₅Fe(CO)₂-(CONH₂) in flüssigem NH₃ auf 10°C erwärmt:

$$\eta^{5} - C_{5}H_{5}Fe(CO)_{2}(CONH_{2}) + NH_{3} \xrightarrow{10^{\circ}C}_{\text{flüss. NH}_{3}} \eta^{5} - C_{5}H_{5}Fe(CO)_{2}(H) + NH_{4}NCO$$
(2)

Hierdurch wird eindeutig bewiesen, dass die Bildung von η^5 -C₅H₅Fe(CO)₂(H) oberhalb 10°C über die Zwischenstufe des Carbamoylkomplexes η^5 -C₅H₅Fe-(CO)₂(CONH₂) erfolgt.

Es lag nun nahe, diese Reaktionen auch auf das Ru und Os auszudehnen. Bei vergleichbaren Reaktionstemperaturen (10–30°C) bilden sich in flüssigem NH₃ sowohl aus den beiden Kationkomplexen $[\eta^5-C_5H_5M(CO)_3]^+$ (M = Ru, Os) als auch aus den von uns erstmals beschriebenen beiden Carbamoylderivaten $\eta^5-C_5H_5M(CO)_2(CONH_2)$ (M = Ru, Os) [11] die Hydrido-carbonyle $\eta^5-C_5H_5M_-$ (CO)₂(H) (M = Ru, Os). Verwendet man für die Reaktionen im Ammonosystem an Stelle der kationischen Tricarbonylkomplexe $[\eta^5-C_5H_5M(CO)_3]PF_6$ (M = Fe, Ru, Os) bzw. der Carbamoylverbindungen $\eta^5-C_5H_5M(CO)_2(CONH_2)$ (M = Fe,

362

^{*} Zusammenfassende Darstellung von Reaktionen kationischer CO-Komplexe mit flüssigem NH3 [9].

Ru, Os) die substituierten Derivate $[\eta^5 - C_5 H_5 Ru(CO)_2(L)]^+$ bzw. $\eta^5 - C_5 H_5 Ru(CO)_2(L)(CONH_2)$ (L = MeNC, PPh₃, PEt₃) [11], so werden sinngemäss zwischen 80 und 100°C neben CO(NH₂)₂ die entsprechenden substituierten, gelb bis hellbraun gefärbten Hydrido-carbonyl-Komplexe $\eta^5 - C_5 H_4 Ru(CO)(L)(H)$ (L = MeNC, PPh₃, PEt₃) gebildet.

Dagegen gelingt es nicht, $[\eta^5-C_5H_5Ru(CO)_2(NCMe)]PF_6$ bzw. $\eta^5-C_5H_5Ru(CO)-(NCMe)(CONH_2)$ in den entsprechenden Hydridokomplex zu überführen, da in diesem Falle ein Angriff des flüssigen NH₃ auf den Nitrilliganden erfolgt.

Durch diese Reaktionen konnte gezeigt werden, dass die von uns erschlossenen Carbamoylkomplexe mit dem CONH_2 -Liganden ausgezeichnete Ausgangsverbindungen für die Synthese neuer oder auch bereits bekannter Hydridocarbonyle sind, wobei die Komplexe η^5 -C₅H₅Ru(CO)(CNMe)(H) und η^5 -C₅H₅Ru(CO)-(PEt₃)(H) erstmalig erhalten wurden.

Zur besseren Übersicht sind die obigen Versuchsergebnisse in Tab. 1 zusammengefasst.

Während η^5 -C₅H₅M(CO)₂(H) (M = Fe, Ru, Os) und η^5 -C₅H₅Ru(CO)(L)(H) (L = MeNC, PEt₃) bei Raumtemperatur viskose Öle mit Schmelzpunkten zwischen --11 und 10°C sind, ist das PPh₃-Derivat fest. Sämtliche Hydridocarbonyle sind in den gebräuchlichen polaren und unpolaren Solvenzien gut löslich.

Die Bildungstendenz der beschreibenen Hydridocarbonyle aus den entsprechenden kationischen Ausgangsverbindungen bzw. Carbamoyl-Komplexen geht aus Tab. 2 hervor. Sie nimmt mit zunehmender Substitution von CO-Gruppen durch andere Liganden sowie mit steigender Ordnungszahl des Übergangsmetalls ab.

Gleichzeitig beobachtet man in derselben Reihenfolge eine Stabilitätszunahme der einmal gebildeten Hydridokomplexe. So ist η^5 -C₅H₅Ru(CO)(PPh₃)(H) wesentlich stabiler als η^5 -C₅H₅Ru(CO)₂(H) und dieses wiederum deutlich beständiger als das äusserst labile η^5 -C₅H₅Fe(CO)₂(H), das bereits bei Raumtemperatur in $[\eta^5$ -C₅H₅Fe(CO)₂]₂ und H₂ zerfällt [14].

Bemerkenswerterweise setzt sich auch das zweikernige, diphosphanverbrückte $\{[\eta^{5}-C_{5}H_{5}Ru(CO)_{2}]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2})\}^{2+}$ bzw. das zweikernige, kovalente $[\eta^{5}-C_{5}H_{5}Ru(CO)(CONH_{2})]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2})$ in flüssigem NH₃ zum ebenfalls zweikernigen, ockerfarbenen festen Hydridokomplex $[\eta^{5}-C_{5}H_{5}Ru(CO)(H)]_{2}$ -

TABELLE 1

DARSTELLUNG DER HYDRIDOCARBONYLE η^5 -C₅H₅M(CO)(L)(H) (L = CO für M = Fe, Ru, Os; L = MeNC, PPh₃, PEt₃ für M = Ru) AUS DEN BETREFFENDEN KATION- BZW. CARBAMOYL-KOMPLEXEN

Ausgangsverbindungen: Kationkomplexe	Carbamoylkomplexe	Hydridokomplexe
[7 ⁵ -C ₅ H ₅ Fe(CO) ₃]PF ₆	η ⁵ -CcHcFe(CO)2(CONH2)	η ⁵ -C ₅ H ₅ F ₂ (CO) ₂ (H) [14]
[75-C5H5Ru(CO)3]PF6	n ⁵ -C ₅ H ₅ Ru(CO) ₂ (CONH ₂)	7 ⁵ -C ₅ H ₅ Ru(CO) ₂ (H) [15]
[n ⁵ -C ₅ H ₅ Os(CO) ₃]PF ₆	η^5 -C ₅ H ₅ O ₅ (CO) ₂ (CONH ₂)	η ⁵ -C ₅ H ₅ O ₅ (CO) ₂ (H) [16]
[75-C5H5Ru(CO)2(CNMe)]PF6	n ^S -C ₅ H ₅ Ru(CO)(CNMe)(CONH ₂)	n ⁵ -C ₅ H ₅ Ru(CO)(CNMe)(H)
In ⁵ -CeHeRu(CO)2(PPha) IBFA	n ⁵ -C _c H _c Ru(CO)(PPh ₃)(CONH ₂)	n ⁵ -CeHeRu(CO)(PPha)(H) [16]
[η ⁵ -C ₅ H ₅ Ru(CO) ₂ (PEt ₃)]Cl	$[\eta^5 - C_5 H_5 Ru(CO)(PEt_3)(CONH_2)$	$\eta^{\rm S}$ -C ₅ H ₅ Ru(CO)(PEt ₃)(H)

TABELLE 2

BILDUNGSTENDENZ UND STABILITÄT DER η⁵-CYCLOPENTADIENYL-CARBONYL-HYDRIDO-KOMPLEXE

(Ph₂PCH₂CH₂PPh₂) um:

 $\{[\eta^{5}-C_{5}H_{5}Ru(CO)_{2}]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2})\}^{2+}+6 \text{ NH}_{3} \xrightarrow{100^{\circ}C}_{flüss. \text{ NH}_{3}}$

$$\begin{array}{c} CO \\ \downarrow \\ \eta^{5} - C_{5}H_{5}Ru(Ph_{2}PCH_{2}CH_{2}PPh_{2})Ru - \eta^{5} - C_{5}H_{5} + 2 CO(NH_{2})_{2} + 2 NH_{4}^{+} \\ \downarrow \\ H \\ H \end{array}$$
(3)

 $[\eta^{5}-C_{5}H_{5}Ru(CO)(CONH_{2})]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2}) + 2 NH_{3} \xrightarrow{100^{\circ}C}_{\text{fluss. NH}_{3}}$

$$[\eta^{5}-C_{5}H_{5}Ru(CO)(H)]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2}) + 2CO(NH_{2})_{2}$$
(4)

Damit wurde erstmals die Synthese eines zweikernigen Hydrido-Komplexes ermöglicht, bei dem an jedes der beiden Metallatome je ein Hydridoligand gebunden ist.

Diskussion der Massen-, IR- und ¹H-NMR-Spektren

Massenspektren

 η^{5} -C₅H₅Ru(CO)(PEt₃)(H) sowie die bereits früher auf anderen Wegen dargestellten Hydrido-carbonyl-Komplexe η^{5} -C₅H₅Ru(CO)₂(H) und η^{5} -C₅H₅Ru(CO)-(PPh₃)(H) können durch das charakteristische Isotopenmuster des jeweiligen Molekülions eindeutig identifiziert werden.

Fig. 1. Massenspektrum von η^{5} -C₅H₅Ru(CO)₂(H); Direkteinlass 25°C, Ionenquellentemperatur 150°C; die relativen Intensitäten der angegebenen *m/e*-Werte beziehen sich auf ¹⁰²Ru und sind hinsichtlich ihrer Isotopenbeiträge korrigiert.

Wie zu erwarten, werden im Falle von η^5 -C₅H₅Ru(CO)₂(H) zunächst die beiden CO-Liganden und anschliessend Wasserstoff abgespalten, was zu den Ionen η^5 -C₅H₅Ru(CO)_x(H)^{*} (x = 1, 0) bzw. η^5 -C₅H₅Ru⁺ führt (Fig. 1).

Im Vergleich hierzu ist das Massenspektrum von η^{s} -C_sH_sRu(CO)(PPh₃)(H) dadurch gekennzeichnet, dass, ausgehend von M^{+} , in einem Simultanprozess gleichzeitig CO und drei Wasserstoffatome abgespalten werden. Für m/e 427 lässt sich ein Fragment der Struktur A postulieren, was insbesondere auch aus

dem Fragmentierungsverhalten des unkoordinierten PPh_3 abgeleitet werden kann [17,18].

Auch im Falle des η^{5} -C₅H₅Ru(CO)(PEt₃)(H) setzt die Fragmentierung des Phosphanliganden unter C₂H₅-Abspaltung bereits am Molekülion ein, wobei unter gleichzeitiger Eliminierung des komplexgebundenen Wasserstoffs das Ion η^{5} -C₅H₅Ru(CO)(PEt₂)⁺ (*m/e* 284) entsteht, das in der Folge zu η^{5} -C₅H₅Ru-(CO)(PC₂H₄)⁺ (*m/e* 254) abgebaut wird.

IR-Spektren

Die IR-Spektren von η^5 -C₅H₅M(CO)₂(H) (M = Fe [15], Ru [15], Os [16]) und η^5 -C₅H₅Ru(CO)(PPh₃)(H) [16] stimmen im Rahmen der Messgenauigkeit gut mit den Literaturdaten überein.

Aus Tab. 3 sind die charakteristischen IR-Absorptionen von η^{5} -C₅H₅Ru(CO)-(L)(H) (L = MeNC, PEt₃) und $[\eta^{5}$ -C₅H₅Ru(CO)(H)]₂(Ph₂PCH₂CH₂PPh₂) zu

Verbindung	Lõsungsmittel	IR-Absorptionen (Zuordnung) (cm ⁻¹)
η ⁵ -C ₅ H ₅ Ru(CO)(CNMe)(H)	CH ₂ Cl ₂	2190m (v(CN)), (2050ss, Zers.), 1980sst (v(CO)), (1931ss) (Zers.)
η^{5} -C ₅ H ₅ Ru(CO)(PEt ₃)(H)	CH ₂ Cl ₂	1950s (v(RuH)), 1905sst (v(CO))
η^5 -C ₅ H ₅ Ru(CO)(PEt ₃)(H)	n-Hexan	1928sst (v(CO))
η^5 -C ₅ H ₅ Ru(CO)(PEt ₃)(H)	Film	1950 Sch (v(RuH)), 1910sst (v(CO))
$[\eta^5 - \tilde{C}_5 \tilde{H}_5 Ru(CO)(H)]_2 (Ph_2 PCH_2 CH_2 PPh_2)$	CH ₂ Cl ₂	1955Sch (v(RuH)), 1916 sst(br) (v(CO))
$[\eta^{5}-C_{5}H_{5}Ru(CO)(H)]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2})$	fest/KBr	1973m (v(RuH)), 1932sst (v(CO))

CHARAKTERISTISCHE IR-ABSORPTIONEN VON η^5 -C₅H₅Ru(CO)(L)(H) (L = MeNC, PEt₃) UND [η^5 -C₅H₅Ru(CO)(H)]₂(Ph₂PCH₂CH₂PPh₂) IN cm⁻¹

ersehen. Im Falle des PEt₃-Derivates beobachtet man bei 1950 cm⁻¹ (Lsg./ CH_2Cl_2) eine Bande schwacher Intensität, die versuchsweise der ν (RuH)-Schwingung zugeordnet wird.

Die im IR-Spektrum (Lsg./CH₂Cl₂) von η^5 -C₅H₅Ru(CO)(CNMe)(H) neben der ν (CO)- und ν (CN)-Schwingung auftretenden sehr schwachen Absorptionen bei 2050 und 1931 cm⁻¹ sind vermutlich auf Zersetzungsprodukte zurückzuführen.

Im IR-Spektrum (fest/KBr) von $[\eta^5-C_5H_5Ru(CO)(H)]_2(Ph_2PCH_2CH_2PPh_2)$ erscheint im kurzwelligen Bereich neben den typischen $\eta^5-C_5H_5$ - und (Ph_2PCH_2-CH_2PPh_2)-Banden eine intensive Absorption für die enständige CO-Gruppe bei 1932 cm⁻¹ (Tab. 3). Die schwächere Bande bei 1973 cm⁻¹ wird der ν (RuH)-Schwingung zugeordnet. Dies erscheint gerechtfertigt, da im Falle ähnlicher Hydrido-carbonyl-Komplexe mit Phosphanliganden die Metall-Wasserstoff-Schwingungen ebenfalls in diesem Bereich beobachtet werden [6,19,20].

Verbindungen des Typs η^5 -C₅H₅Ru(CO)(L)(H) (L = MeNC, PPh₃, PEt₃) bzw. [η^5 -C₅H₅Ru(CO)(H)]₂(Ph₂PCH₂CH₂PPh₂) sollten wie die entsprechenden Carbamoylderivate [11] optische Aktivität aufweisen.

¹H-NMR-Spektren

Die Protonenresonanzspektren von η^5 -C₅H₅M(CO)₂(H) (M = Fe [15], Ru [15], Os [16]) sowie η^5 -C₅H₅Ru(CO)(PPh₃)(H) [16] stimmen mit den Literaturdaten gut überein und zeigen in allen Fällen bei hohem Feld eine Signalgruppe zwischen ca. —10 bis —15 ppm rel. TMS, wie sie für Hydrido-carbonyl-Komplexe charakteristisch ist.

In Tab. 4 sind die ¹H-NMR-Daten von η^5 -C₅H₅Ru(CO)(L)(H) (L = MeNC, PEt₃) und $[\eta^5$ -C₅H₅Ru(CO)(H)]₂(Ph₂PCH₂CH₂PPh₂) zusammengefasst.

Beim Isonitrilkomplex η^{s} -C₅H₅Ru(CO)(CNMe)(H) tritt neben den erwarteten drei Singuletts noch ein weiteres Signal auf, das auf Zersetzungsprodukte zurückzuführen ist und mit dem IR-spektroskopischen Befund in Einklang steht.

Bei den einkernigen, phosphan-substituierten Verbindungen η^5 -C₅H₅Ru(CO)-(L)(H) (L = PEt₃) findet man für die Hydridoliganden ein Dublett und bei dem zweikernigen, Ph₂PCH₂CH₂PPh₂-verbrückten Komplex $[\eta^5$ -C₅H₅Ru(CO)(H)]₂-(Ph₂PCH₂CH₂PPh₂) ein Triplett. Verursacht wird diese Aufspaltung durch die Kopplung zwischen den Hydridwasserstoffen und den P-Atomen der PEt₃- und

TABELLE 3

TABELLE 4

Verbindung	Solvens	δ(¹ H) ^a	Zuordnung
	Aceton-d ₆	3.33 S (3 H)	CNMe
		4.95 S (5 H)	η^{5} -C ₅ H ₅
		(5.95)	(Zers.)
			Ru—H
n^{5} -C-H-Ru(CO)(PEt ₃)(H)	Benzol-d ₆	0.92 M (15 H)	CH ₂ CH ₃
	-	4.85 S (5 H)	η^5 -C ₅ H ₅
		—12.18 D (1 H)	Ru—H
			(J(HP) 33 Hz)
[75-C-H-Ru(CO)(H)]2(Ph2PCH2CH2PPh2)	Aceton-d ₆	2.90 M (4 H)	CH ₂ CH ₂
		4.96 S (10 H)	η ⁵ -C ₅ H ₅
		7.63 M (20 H)	C ₆ H ₅
		—13.25 T (2 H)	Ru—H
		• •	(J(HP) 33 Hz)

¹H-NMR-SIGNALE VON η^5 -C₅H₅Ru(CO)(L)(H) (L = MeNC, PEt₃) UND [η^5 -C₅H₅Ru(CO)(H)]₂-(Ph₂PCH₂CH₂PPh₂) IN ppm (δ) REL. TMS

^a Relative Intensitäten in Klammern.

Ph₂PCH₂CH₂PPh₂-Liganden, wobei im Falle des $[\eta^5 - C_5H_5Ru(CO)(H)]_2(Ph_2PCH_2 - CH_2PPh_2)$ infolge Überlagerung zweier Dubletts ein Triplett mit dem Intensitätsverhältnis 1/2/1 beobachtet wird. Die Kopplungskonstanten ²J(HP) liegen mit ca. 30 Hz im erwarteten Bereich [21].

Wie bei der zweikernigen Carbamoylverbindung $[\eta^5-C_5H_5Ru(CO)(CONH_2)]_2$ -(Ph₂PCH₂CH₂PPH₂)[11] folgt aus dem ¹H-NMR-Spektrum von $[\eta^5-C_5H_5Ru(CO)-(H)]_2(Ph_2PCH_2CH_2PPh_2)$ dass das ditertiäre Phosphan Ph₂PCH₂CH₂PPh₂ zwischen den beiden Ruthenium-Zentralatomen als zweizähnig-bimetallischer Ligand fungiert. So findet man nämlich nur je ein Multiplett für die Methylen- bzw. Phenylprotonen; ausserdem ergibt die Integration das erwartete Protonenverhältnis von 2/4/10/20 für den verbrückten Hydridokomplex.

Experimentelles

Sämtliche Reaktionen müssen unter Luft- und Feuchtigkeitsausschluss in N_2 -Atmosphäre durchgeführt werden. Bezüglich der Experimentiertechnik in flüssigem NH_3 wird auf eine frühere Arbeit [22] verweisen.

Zur Darstellung von η^5 -C₅H₅M(CO)₂(H) (M = Fe, Ru, Os), η^5 -C₅H₅Ru(CO)-(L)(H) (L = MeNC, PPh₃, PEt₃) und $[\eta^5$ -C₅H₅Ru(CO)(H)]₂(Ph₂PCH₂CH₂PPh₂) setzt man die jeweiligen kationischen Ausgangsverbindungen [11,23] oder die entsprechenden Carbamoylderivate [11] mit ca. 30 ml flüssigem NH₃ in Einschlussrohren um. Nach dem Abdestillieren des flüssigem NH₃ werden die Hydridokomplexe mit n-Hexan aufgenommen und von den darin schlecht löslichen Ammoniumsalzen bzw. CO(NH₂)₂ abfiltriert.

Anschliessend zieht man das Lösungsmittel im Vakuum ab und reinigt die so erhaltenen Öle oder Feststoffe chromatographisch (Al₂O₃ I, Benzol/Petrolether) bzw. im Falle des $[\eta^{5}-C_{5}H_{5}Ru(CO)(H)]_{2}(Ph_{2}PCH_{2}CH_{2}PPh_{2})$ durch Extraktion mit n-Pentan.

Die Komplexe η^{5} -C₅H₅M(CO)₂(H) (M = Fe, Ru, Os) können auch im Hochvakuum bei 30---60°C destilliert werden.

AUS KATIONKOWFLEAEN UDEK CAKBAM	JI DUBRIY ALEN		
Darstellung von	Einwaagen		Realttions-
	Kationkomplexe	Carbumoylderivate	- bedingungen Temp./ Zeit
η ⁵ -C ₅ H ₅ F ₆ (CO) ₂ (H)	600 mg (1.43 mmol)	630 mg (2.85 mmol)	10°C/10 min
	$[\pi^{5}$ -C ₅ H ₅ Fe(CO) ₃]PF ₆	η ² -C ₅ H ₅ Fe(CO) ₂ (CONH ₂)	
η⁵-C₅H₅Ru(CO)₂(H)	400 mg (1.01 mmol)	300 mg (1.13 mmol)	25°C/12 h
	[7 ⁵ -C ₅ H ₅ Ru(CO) ₃]PF ₆	η ⁵ -C ₅ H ₅ Ru(CO) ₂ (CONH ₂)	
η ⁵ -C ₅ H ₅ Os(CO) ₂ (H)	500 mg (1,03 mmol)	250 mg (0.70 mmol)	30°C/72 h
7	[1 ⁵ -C ₅ H ₅ O ₈ (CO) ₃]PF ₆	η ⁵ -C ₅ H ₅ O ₆ (CO) ₂ (CONH ₂)	
η ^{5-C} 5H5Ru(CO)(CNMe)(H)	600 mg (1.47 mmol)	150 mg (0.54 mmol)	80°C/12 h
	[7 ⁵ -C ₅ H ₅ Ru(CO) ₂ (CNMc)]PF ₆	η ⁵ -C ₅ H ₅ Ru(CO)(CNMe)(CONH ₂)	
η ⁵ -C ₅ H ₅ Ru(CO)(PPh ₃)(H)	700 mg (1,11 mmol)	300 mg (0.60 mmol)	100°C/72 h
1	[7 ⁵ -C ₅ H ₅ Ru(CO) ₂ (PPh ₃)]PF ₆	η ⁵ -C ₅ H ₅ Ru(CO)(PPh ₃)(CONH ₂)	
n ⁵ -C ₅ H ₅ Ru(CO)(PEt ₃)(H)	400 mg (0.83 mmol)	400 mg (1.12 mmol)	100°C/48 h
r 1	[η^{5} -C ₅ H ₅ Ru(CO) ₂ (PEt ₃)]PF ₆	η ⁵ -C ₅ H ₅ Ru(CO)(PEt ₃)(CONH ₂)	
[7 ⁵ -C ₅ H ₅ Ru(CO)(H)] ₂ (Ph ₂ PCH ₂ CH ₂ PPh ₂)	600 mg (0.53 mmol)	600 mg (0.69 mmol)	100°C/72 h
	{[n2-C5H5Ru(CO)2]2-	[n ⁵ .c ₅ H ₅ Ru(CO)(CONH ₂)] ₂ .	
	(Ph3PCH2CH2PPh3)}(PF6)2	(Ph2PCH2CH2Ph2)	
والمنافعة والموافقة والموافقة والمحافظ والمعالية والمحافظ والمحا	ويعياهيهما والمنافعة والمستحمد والمستردين والمعارية والمارد والمارد والمارية والمراجعة وال	والتحريق والمالية والمراجعة والمراجعة والمتركبة والمستورين والمراجعة والمحاصر والمراحلة والملادة والمترومين فالمارية والمراجع والمتحرين والملاحية والمراجعة والمحاجل والمردين والملاحية والمحاجر والمحاجل والمردين والملاحية والمحاجر والمحاجز والمحاجر والمحاجز والمحاجر والمحاجر والمحاجر والمحاجز والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمحاجر والمحاجز	والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمولة والمحمد

EINWAAGEN UND REAKTIONSBEDINGUNGEN FÜR DIE DARSTELLUNG DER HYDRIDOKOMPLEXE DES EISENS, RUTHENIUMS UND OSMIUMS AUS KATTONKOMPLEXEN ODER CARBAMOVI.DERIVATEN TABELLE 5

TABELLE 6

ANALYSEN, REL. MOLEKÜLMASSEN, AUSBEUTEN UND SCHMELZPUNKTE DER HYDRIDOKOMPLEXE DES EISENS, RUTHENIUMS UND OSMIUMS l

-

Verbindungen	Analysen (gef. (ber.) (%))			rel. Mol	Aus-	Schmp,
	U	11	P	Fe/Ru/Os	massen (gof. (ber.))	beuten (%)	(0)
η ⁵ -C ₅ H ₅ Fe(CO) ₂ (H)	47.68	3.31	I	31.40	180.0	90.0	ш
	(47.24)	(3.39)	ł	(31.38)	(177.9)		
η ⁵ -C ₅ H ₅ Ru(CO) ₂ (H)	38,06	2.66	ł	45.07	220.0	81.2	-11
	(37.67)	(2.71)	I	(45.28)	(223.2)		
η ⁵ -C ₅ H ₅ Os(CO) ₂ (H) ^d	1	. 1	1		315.0	3.1	5
	(26.92)	(1.94)	l	(60.89)	(312,3)		
η ⁵ -C ₅ H ₅ Ru(CO)(CNM ₆)(H) ^a		. 1	١	1	1	2.7	10
1	(40.67)	(3.84)	ł	(42.78)	(236,2)		
η ⁵ -C ₅ H ₅ Ru(CO)(PPh ₃)(H)	62,96	4.69	6.90	22.15	480,0	60.1	175
	(63.01)	(4.63)	(8.77)	(22.09)	(467.5)		
η ⁵ -C ₅ H ₅ Ru(CO)(PEt ₃)(H)	46.32	6.81	10.01	32,40	319.0	36.2	9
	(46.00)	(6.76)	(8.89)	(32,25)	(313,3)		
[7 ⁵ -C ₅ H ₅ Ru(CO)(H)] ₂ (Ph ₂ PCH ₂ CH ₂ PPh ₂)	57,60	4.82	7.85	26.98	809,5	31.0	135
· · ·	(57,86)	(4.60)	(1.85)	(25.63)	(788.8)		
والمتحافظ والمحافظ							

^a IR- und ¹H-NMR spektroskopisch identifiziert.

Einwaagen und Reaktionsbedingungen sind in Tab. 5, Analysen, rel. Molekülmassen (in C_6H_6), Ausbeuten und Schmelzpunkte in Tab. 6 zusammengestellt.

Dank

Der Deutschen Forschungsgemeinschaft, dem Verband der Chemischen Industrie sowie der Firma Degussa, Hanau, danken wir für die grosszügige Unterstützung dieser Untersuchungen.

Literatur

- 1 A. Jungbauer und H. Behrens, Z. Naturforsch. B, im Druck.
- 2 H. Behrens, E. Lindner und P. Pässler, Z. Anorg. Allg. Chem., 365 (1969) 137.
- 3 H. Behrens, E. Lindner, D. Maertens, P. Wild und R.-J. Lampe, J. Organometal. Chem., 34 (1972) 367.
- 4 J. Ellermann, H. Behrens und H. Krohberger, J. Organometal. Chem., 46 (1972) 116.
- 5 H. Krohberger, H. Behrens und J. Ellermann, J. Organometal. Chem., 46 (1972) 139.
- 6 J. Ellermann, J.F. Schindler, H. Behrens und H. Schlenker, J. Organometal. Chem., 108 (1976) 239.
- 7 A. Pfister, H. Behrens und M. Moll, Z. Anorg. Allg. Chem., 428 (1977) 53.
- 8 H. Behrens, R.-J. Lampe, P. Merbach und M. Moll. J. Organometal. Chem., 159 (1978) 201.
- 9 H. Behrens, Four Decades of Metal Carbonyl Chemistry in Liquid Ammonia, Aspects and Prospects, in Advan. Organometal. Chem., 18 (1980) im Druck.
- 10 D. Bauernschmitt, H. Behrens und J. Ellermann, Z. Naturforsch. B. B, 34 (1979) 1362.
- 11 H. Behrens und A. Jungbauer, Z. Naturforsch. B, im Druck.
- 12 H. Behrens, E. Ruyter und H. Wakamatsu, Z. Anorg. Allg. Chem., 349 (1967) 241.
- 13 H. Behrens und P. Pässler, Z. Anorg. Allg. Chem., 365 (1969) 128.
- 14 M.L.H. Green, C.N. Street und G. Wilkinson, Z. Naturforsch. B, 14 (1959) 738.
- 15 A. Davison, J.A. McCleverty und G. Wilkinson, J. Chem. Soc. A, (1963) 1133.
- 16 A.P. Humphries und S.A.R. Knox, J. Chem. Soc. Dalton Trans., (1975) 1710.
- 17 D.H. Williams, R.S. Ward und R.G. Cooks, J. Amer. Chem. Soc., 90 (1968) 966.
- 18 A.T. Rake und J.M. Miller, J. Chem. Soc. A, (1970) 1881.
- 19 T. Blackmore, M.I. Bruce und F.G.A. Stone, J. Chem. Soc. A, (1971) 2376.
- 20 P.S. Hallam, B.R. McGarvey und G. Wilkinson, J. Chem. Soc. A, (1968) 3143.
- 21 E.L. Muetterties, Transition Metal Hydrides, Vol. 1, Marcel Dekker Inc., New York, 1971.
- 22 H. Behrens und J. Vogl, Chem. Ber., 96 (1963) 2220.
- 23 A. Jungbauer und H. Behrens, Z. Naturforsch. B, 33 (1978) 1083.